BS-MS Major in Physics | Semester IV | | | | | | | | | | |-------------|----------------|----------------------------|---|---|---|-----------------|--|--|--| | Sr.
No | Course
Code | Course Name | L | T | P | C | | | | | 1 | PH 202 | <u>Classical Mechanics</u> | 2 | 1 | 0 | 6 | | | | | 2 | PH 203 | Quantum Mechanics - I | 2 | 1 | 0 | 6 | | | | | 3 | PH 204 | Mathematical Physics-I | 2 | 1 | 0 | 6 | | | | | 5 | | Program Elective-I | 2 | 1 | 0 | 6 | | | | | 6 | | HSS Elective-I | 3 | 0 | 0 | 6 | | | | | | | Total Credits | | | | <mark>30</mark> | | | | ## **BS-MS** Major in Physics | 1 | Title of the course | Classical Mechanics | | | | | |---|--------------------------|--|--|--|--|--| | 1 | (L-T-P-C) | (2-1-0-6) | | | | | | 2 | Pre-requisite courses(s) | Nil | | | | | | 3 | Course content | Review of Newtonian Mechanics - Newton's Laws of Motion and Conservation Laws. Principles of Canonical Mechanics - Constraints and generalized coordinates, Alembert's principle, Lagrange's equation, Hamilton's variational principle, canonical systems, symmetries and conservation laws, Noether's theorem, Liouville's Theorem. Central Force: Equations of motion Virial Theorem, Kepler's Laws, Scattering in a Central Force Field. Rigid Body: Euler angles, Coriolis Effect, Euler equations, moment of inertia tensor, motion of asymmetric top. Small Oscillations: Eigen value problem, frequencies of free vibrations and normal modes, forced vibration, dissipation. Special Theory of Relativity: Newtonian relativity, Michelson-Morley experiment, Special theory of relativity, Lorentz transformations and its consequences, addition of velocities, variation of mass with velocity, massenergy relation, Minkowski four-dimensional continuum, four vectors. Hamiltonian Equation, Gauge transformation, canonical transformation, Infinitesimal transformation, Poisson brackets, Hamilton-Jacobi equations, Separation of variables. Lagrangian and Hamiltonian formulation of continuous systems. | | | | | | 4 | Texts/References | Classical Mechanics: H. Goldstein, C. P. Poole, and J. Safko, Pearson 2011. Classical Mechanics: N. C. Rana and P. S. Joag, Tata McGraw Hill, 2017. Introduction to Classical Mechanics: David Morin, Cambridge University Press, 2008. Mechanics: L.D. Landau and E. M. Lifshitz, Butterworth-Heinemann, 3rd edition, 1982. Mechanics: From Newton's Laws to Deterministic Chaos, F. Scheck, Springer, 5th edition, 2010. Introduction to Classical Mechanics, R G Takwale and P S Puranik, Tata McGraw Hill, 2008. | | | | | ## **BS-MS** Major in Physics | 1 | Title of the course | Quantum Mechanics - I | | | | |---|--------------------------|--|--|--|--| | | (L-T-P-C) | (3-1-0-8) | | | | | 2 | Pre-requisite courses(s) | PH101 MA101 | | | | | 3 | Course content | Review of Wave mechanics, Schrodinger equation, Uncertainty principle, wave packets, group velocity and phase velocity. | | | | | | | Postulates of quantum mechanics, probability and probability current density, operators, eigenvalues and eigenfunctions. Bound states, delta-function potential, and harmonic oscillator. | | | | | | | Formalism: Hilbert space, Observables, Eigenfunctions of Hermitian operator, Dirac's notation, matrix representations of vectors and operators, parity operation, matrix theory of harmonic oscillator. | | | | | | | Theory of Angular Momentum: Spherical harmonics, eigenvalues of L^2 and L_z, addition of angular momentum, commutation relations, degeneracies. | | | | | | | Hydrogen atom, quantum numbers, two particle systems. | | | | | 4 | Texts/References | Introduction to Quantum Mechanics, D. J. Griffiths and D. F. Schroeter, Cambridge University Press, 3rd edition, 2019. Modern Quantum Mechanics, J. J. Sakurai, Cambridge University Press, 2017. Principles of Quantum Mechanics, R. Shankar, Springer, 2014. Quantum Physics, S. Gasiorowicz, John Wiley, 2000. Quantum Mechanics, L. D. Landau and E.M. Lifshitz, Pergamon press, 1965 | | | |