1 | Title of the course (L-T-P-C) | Quantum Physics and Applications (2-1-0-6) |
2 | Pre-requisite courses(s) | Nil |
3 | Course content | Quantum nature of light: Photoelectric Effect and Compton Effect. Stability of atoms and Bohr`s rules. Wave particle duality: De Broglie wavelength, Group and Phase velocity, Uncertainty Principle, Double Slit Experiment. Schrödinger Equation. Physical interpretation of Wave Function, Elementary Idea of Operators, Eigen-value Problem. Solution of Schrödinger equation for simple boundary value problems. Reflection and Transmission Coefficients. Tunneling. Particle in a three dimensional box, Degenerate states. Exposure to Harmonic Oscillator and Hydrogen Atom without deriving the general solution. Quantum Statistics: Maxwell Boltzmann, Bose Einstein and Fermi Dirac Statistics by detailed balance arguments. Density of states. Applications of B-E statistics: Lasers. Bose-Einstein Condensation. Applications of F-D statistics: Free electron model of electrons in metals. Concept of Fermi Energy. Elementary Ideas of Band Theory of Solids. Exposure to Semiconductors, Superconductors, Quantum Communication and Quantum Computing. |
4 | Texts/References |
|